فشرده با استفاده همزمان از دو ساختار Branch-line و تحلیل یک کویلر

استاب‌های موازی و خط ماکروواسیریپ ناقص، با قابلیت حذف هارمونیک

اسفند حمیدی ۱۳۹۲، مرتبه کاربردی ۳
دانشگاه صنعتی ملک اشتر، دانشکده صنعتی ملک اشتر
email: e.hameidi@omuz.ac.ir، t.s.karoomi@yahoo.com

چکیده
در این مقاله ساختار متافوی از یک کویلر فشرده برای استفاده در تولید برق می‌باشد. ساختار توسط یک کویلر برای استفاده در ساختار جزیره و ساختار جزیره به صورت همزمان استفاده می‌شود. ساختار برای استفاده از یک یا دو ساختار، کویلر طراحی شده فشرده بوده و تولید می‌شود. برای استفاده به همزمان از دو ساختار، کویلر در دو سطح تولید می‌شود. ساختار جزیره و ساختار جزیره به صورت همزمان استفاده می‌شود.

کلید واژه‌ها: حذف هارمونیک‌های ناخواسته، خط ماکروواسیریپ ناقص جزیره، ساختار استاب، فشرده سازی کویلر

1- مقدمه

کویلرهای یکی از مهم‌ترین ابزارهای هیبریدی به حساب می‌آیند. در کنار مزایایی که این کویلرهای دارند، مشکل اصلی آنها، ممکن است افزایش افتالی در مدار است. با توجه به کاربرد‌های بسیار کویلرهای در این باره استفاده به مکروواسیریپ برداشته شدند. ساختار جزیره آن‌ها از اهمیت باندل برخوردار است. این ساختار از طریق روش‌های مختلف برای این منظور ارائه شدند. خواصی که از جمله آن‌ها می‌توان به ساختار زمین ناقص (DGS) و شامل خواصی که برای این منظور ارائه شدند.

2- کویلرهای یک ساختار موازی Branch-line

استاب‌های موازی در خط ماکروواسیریپ باعث ایجاد فوق‌العاده جدی می‌شود. در طول خروجی، در مورد سیگنال مرتعی برای این منظور استفاده شده است. برای کنترل خانه‌های ساختار موازی در طول خروجی، طبق رابطه (1)

\[V_{p,\text{new}} = \frac{1}{\sqrt{L(C + C_p)}} \]

(1)

\[Z_{\text{new}} = \frac{L}{C + C_p} \]

(2)
سومین کنفرانس الکترومغناطیسی مهندسی (کام) ایران
13-12 آذر ماه 1393

که در آن L به ترتیب انдоکانس و ظرفیت خازن خط C_p معنی دارد.

$$L = \frac{1}{4\pi^2 f_0^2} C$$

$$f_0 = \frac{1}{2\pi^2 L C}$$

همچنین رابطه ۶ نیز برای محاسبه اندوکانس یک واحد ارائه شده است.

$$L = \frac{2\mu_0}{\pi} \sqrt{a^2 + b^2}$$

شکل ۳: خط ماکولستربی با استفاده از فرمول‌های شده است.

شکل ۴: یک واحده ماده مداری در فرکانس در گاگارتر (یک کولر) نشان می‌دهد که برای انواع مختلف (ab) دارای فرکانس شده و با استفاده از فرمول‌های شده است.

شکل ۵: نمایش دادن نتایج شبیه‌سازی برای یک کولر در گام بعدی حذف هارمونیک‌های آغازین است.

3- به کارگیری ساختار ماکولستربی ناقص جزیره‌ای در شکل ۴ نشان داده شده است. مقدار ظرفیت خازن انوکانس (brحسب طراحی) با استفاده از رابطه ۳ نیز محاسبه شده است.

$$C = \frac{f}{4\pi\mu_0 (f_0^2 - f_c^2)}$$
سومین کنفرانس الکترومغناطیسی مهندسی (کام) ایران
۱۳۹۳-۱۳ آذرماه

مطابق شکل ۵ فرکانس تشذیب ایجاد شده، همچنان از فرکانس عادی‌تریکی شکل ۳ بالاتر است. در شکل ۶ ساختاری DMS موثر به شکل ۱‌گانه‌ای وارد ایجاد فیلتر تر ارائه شده است (برای خط ۲۵ اهم). در این ساختار، از قطعه‌ای به صورت جزئی‌های جنس خط ماکروسترپ‌ب (داخلی و در نزدیک به دهانه آن استفاده شده است) به این وسیله طرفیت می‌کند. اضافی به DMS افزوده می‌شود که این امر باعث پایین آمدن فرکانس گذشته خواهد شد.

شکل ۲ خروجی بارامترهای ۵ برابر خط ۲۵ اهم، DMS ساختار

در شکل ۸ کاهش نهایی شیب‌سازی شده (تفاوتی از خط ۲۵ و ۵۰ اهم) به همراه خروجی‌های بارامتر S نشان داده شده است. همچنین در شکل ۴-ج اختلاف فاز بین دو پورت خروجی دیده می‌شود که مطلوب انتظار این اختلاف فاز تقریباً ۹۰ درجه است.

شکل ۶ آلف) نما فیزیکی DMS (ب) مدار معدال S

در ادامه مطلوب از خط ۲۵ اهم، برابر خط ۲۵ اهم نیز مراحل را تکرار می‌کنیم که نتایج خروجی آن در شکل ۷ آورده شده است.
سومین کنفرانس الکترومغناطیسی مهندسی (کام) ایران
۱۳-۱۲ آذر ماه ۱۳۹۳

همانطوری در نمودار شکل ۸ مشخص است در نمونه طراحی شده، Power-handling نتیجه گیری می‌شود که دست رفتند کمتر از ۲۵ درصد از نسبت به کوکرل عادی، نوتسهای ایجاد کوکرل را به ۴/۲۲ درصد یک کوکرل برای انرژی.

نتیجه گیری
در این مقاله روشی برای فشرده‌سازی حذف هارمونیک و آفتی‌سازی Branch-line نسبت قابلیت انتقال توان در کوکرل ابزارهای (IDMS) ظرفیت‌های واقعی کوکرل استفاده از خط ماکرواستریپ با قصه جریان (IDMS) به کوکرل استفاده‌ها و کوکرل معمولی دست یافتنی فرکسان تشکیل داده خوب بر روی هارمونیک‌های خارجی‌ها تنظیم شده است؛ علاوه بر این کوکرل طراحی شده توانایی انتقال توان بیشتری را نسبت به کوکرل با استانداردهای داده است.

مراجع

[۷] مربوطی کازرونی، سامان کوکرل، نوتسهی و تحلیل کوکرل فشرده با استفاده از از ابزارهای ماکرواستریپ با کاربردی در رادار و اپتیکی کوکرل در ابزارهای الکترورفکانسی مهندسی (کام) ایران، دانشگاه صنعتی خواجه نصیرالدین طوسی، دوازدهم دی ماه ۱۳۹۴، صفحه ۱۱۰-۱۱۲.