بررسی تولید جمع‌فرمکانسی در نقطه‌ی کواتنومی کروی با میدان الکتریکی در حضور برهم کنش اسپین - مدار

فاطمه عسکری پور اوردرچی، حسن رنجر عسکری، مسعود کریمی پور

دانشکده فیزیک، دانشگاه ولی عصر (عج) رفسنجان، رفسنجان، ایران

fatemeh.askari@gmail.com

چکیده: در این مقاله تولید جمع‌فرمکانسی در نقطه‌ی کواتنومی کروی با پتانسیل سهموی و میدان الکتریکی در چارچوب جرم مؤثر و با استفاده از رهیافت ماتریس چگالی و در حضور برهم کنش اسپین - مدار مورد بررسی قرار گرفته است. با محاسبه ویژه انرژی‌ها و ویژه توابع، ضریب پذیرفته‌رای مربوط برهم کشتی در نقاط اونیا از شعاع نقطه‌ی کواتنومی، شدت برهم کشتی اسپین - مدار و میدان الکتریکی بستگی آمده است. نشان داده شده که اثر برهم کنش اسپین - مدار روي ضریب پذیرفته‌رای مربوط دوم جمع‌فرمکانسی ناجیز است.

کلیدواژه‌ها: تولید جمع‌فرمکانسی، برهم کنش اسپین، مدار، نقطه‌ی کواتنومی

1- مقدمه

با پیشرفت نانوتکنولوژی، انواع مختلفی از نیم رسانا - های کم بعد مثل چاه کواتنومی، سیم کواتنومی و

این مقاله در مورد کنترل الکترومغناطیسی میدان ایرانیان همیشه مسئول می‌باشد.
2- تئوری

۱- توابع موج

هامیلتونی الکترون در نقطه‌ی کوانتومی کروی با
یک‌سهمی سه‌بعدی چه تحت میدان الکتریکی در جهت
ظرفیتی است، با تقیی کردن جرم مؤثر برای با:

\[H = \frac{-\hbar^2}{2m_e} \nabla^2 + \frac{1}{2} m_e \omega_0^2 \vec{r}^2 + |e| F \zeta \] \hspace{1cm} (1)

که میدان الکتریکی می‌باشد با تعیین \(\lambda \),
معادله طول \(\lambda \) کمیتهای بدون

\[x_1 = \lambda z - \beta \text{ و } x_2 = \lambda y, \text{ و } x_3 = \lambda x \]

شد. بنابراین \(H \) به دست می‌آید:

\[H_+ = \frac{-\hbar^2 \lambda^2}{2m_e} \left[\frac{\partial}{\partial x_1^2} - x_1^2 + \frac{\partial}{\partial x_2^2} - x_2^2 + \beta^2 \right] \] \hspace{1cm} (2)

که در آن \(\beta = m_e F / \hbar^2 \lambda^3 \)

برای معادله‌ی شروع گذار \(\beta \)
و یک مقدار و یک تابع زیر به دست

\[\varphi_{\eta_{n_1} n_2} (x_1, x_2, x_3) = \sqrt{\frac{\lambda^3}{n_1! n_2! n_3! 2^{n_1 + n_2 + n_3}} \sqrt{\pi^3}} \times \] \hspace{1cm} (3)

\[e^{-\frac{1}{2} (x_1^2 + x_2^2)} H_{n_1} (x_1) H_{n_2} (x_2) H_{n_3} (x_3) \]

\[E_{\eta_{n_1} n_2} = \left(n_1 + n_2 + n_3 + \frac{3}{2} \right) \hbar \omega_0 - \frac{e^2 F^2}{2m_e \omega_0} \] \hspace{1cm} (4)

که \(E_{\eta_{n_1} n_2} \) تابع هر می‌باشد.

با در نظر گرفتن این‌که در الکترون، هلمیلتونی
بره‌ن کنش اسپین- مدار مشابه باه‌ی صورت سپر در نظر

\[H_{SOF} = \frac{\alpha}{\hbar} (\vec{P} \times \vec{n}) \cdot \vec{\sigma} \] \hspace{1cm} (5)

شکسته‌اند.

\[\frac{\partial}{\partial x_1} \psi + \alpha \frac{\partial}{\partial x_2} \psi - i \alpha \frac{\partial}{\partial y} \psi = 0 \] \hspace{1cm} (7)

\[-\alpha \frac{\partial}{\partial x_1} \psi - i \alpha \frac{\partial}{\partial y} \psi + (H_+ - E) \psi = 0 \] \hspace{1cm} (8)

با جایگزینی \(\psi^+ \psi^- \) در معادلات بالا و با استفاده از

استقلال خطی \(H_+ (x) \), روابط زیر برای دست می‌آوریم:

\[(E_{\eta_{n_1} n_2} - E) A_{\eta_{n_1} n_2}^+ - i n_2 \alpha \lambda A_{\eta_{n_1} n_2}^- = 0 \] \hspace{1cm} (11)

\[(E_{\eta_{n_1} n_2} - E) A_{\eta_{n_1} n_2}^+ - \frac{i}{2} \alpha \lambda A_{\eta_{n_1} n_2}^- = 0 \] \hspace{1cm} (12)

\[(E_{\eta_{n_1} n_2} - E) A_{\eta_{n_1} n_2}^+ + n_2 \alpha \lambda A_{\eta_{n_1} n_2}^- = 0 \] \hspace{1cm} (13)

\[(E_{\eta_{n_1} n_2} - E) A_{\eta_{n_1} n_2}^+ - \frac{1}{2} \alpha \lambda A_{\eta_{n_1} n_2}^- = 0 \] \hspace{1cm} (14)

\[\sum_{n_1, n_2, n_3} A_{\eta_{n_1} n_2}^+ \varphi_{\eta_{n_1} n_2}^* (x_1, x_2, x_3) \] \hspace{1cm} (9)

\[\sum_{n_1, n_2, n_3} A_{\eta_{n_1} n_2}^+ \varphi_{\eta_{n_1} n_2} (x_1, x_2, x_3) \] \hspace{1cm} (10)

شکسته‌اند.
در معادله (17)، اگر از اثر اسپین- مدار صرف نظر کنیم، $\alpha = 0$ سپرده حالت ψ به

$$\psi = \begin{pmatrix} \phi_{n_{n-1} \lambda} (\vec{r}) \\ 0 \end{pmatrix}$$

بردار حالت به $\alpha = 0$ اسپین- ایست در معادلات (20)، اگر α بردار حالت اسپین-یالا ابست. بر این روش ویژه توابع را تا اولین مرتبه α بدست آورده.

ب - ضریب پذیرفتهای
برای بررسی تولید جمع فرکانسی لازم است ضریب پذیرفتهای ماتریسی زیر را با استفاده از راه‌های ماتریس چگالی بدست آورده و با استفاده از همان حاکم بر ماتریس چگالی به صورت زیر است [5].

$$\hat{\rho}_{nm} = -\frac{i}{\hbar} [\hat{H} + \hat{V}, \hat{\rho}]_{nm} - \gamma_{nm} (\rho_{nm} - \rho_{nm}^{(eq)})$$

$$A_{n_{n+1} \lambda} = \frac{1}{1 + \left(\frac{E_{n_{n+1} \lambda} - E}{E_{n_{n+1} \lambda} - E^{0}}\right)^3} \frac{2}{\left(E_{n_{n+1} \lambda} - E^{0}\right)^2}$$

$$\lambda \alpha \left(\frac{1}{2} A_{n_{n-1} \lambda} - (n_{n+1} + 1) A_{n_{n+1} \lambda} \right) + \frac{i}{2} A_{n_{n+1} \lambda} + \frac{(n_{n+1} + 1) A_{n_{n+1} \lambda}}{E_{n_{n+1} \lambda} - E^{0}} = 0$$

$$\psi^-(x_1, x_2, x_3) = \sum_{n_{n-1} \lambda} A_{n_{n-1} \lambda} \rho_{n_{n-1} \lambda} (x_1, x_2, x_3)$$

$$\psi^+(x_1, x_2, x_3) = A_{n_{n-1} \lambda} \rho_{n_{n-1} \lambda} (x_1, x_2, x_3)$$

 به همین طریق با فرض ψ^- و ψ^+ به صورت زیر:

$$\psi^-(x_1, x_2, x_3) = \sum_{n_{n-1} \lambda} A_{n_{n-1} \lambda} \rho_{n_{n-1} \lambda} (x_1, x_2, x_3)$$

$$\psi^+(x_1, x_2, x_3) = A_{n_{n-1} \lambda} \rho_{n_{n-1} \lambda} (x_1, x_2, x_3)$$

مثال
با استفاده از همان روش قبل می توان ویژه توابع را به صورت زیر بدست آورده:
در این رابطه، جملهٔ دوم سمت راست جملهٔ میرایی، γ_{nm}، انتخاب و هدفی و γ_{nm} است. با نظر گرفتن تابع ماتریس چگالی به‌صورت (20)، به معادلهٔ (21) تبدیل می‌شود:

$$\frac{\partial \rho_{nm}^{(n)}}{\partial t} = -i \omega_{nm} \rho_{nm}^{(n)} - \frac{i}{\hbar} \left[\vec{\Phi}, \rho_{nm}^{(n)} \right]_{nm} - \gamma_{nm} \left[\rho_{nm}^{(n)} - \rho_{nm}^{(0)} \right]$$

با حل معادلهٔ فوق $\rho_{nm}^{(n)}$ و $\rho_{nm}^{(0)}$ به ترتیب به دست خواهد آمد:

$$\rho_{nm}^{(n)} = -i \omega_{nm} \rho_{nm}^{(0)} - \gamma_{nm} \rho_{nm}^{(1)} - \frac{1}{\hbar} \left[\vec{\Phi}, \rho_{nm}^{(1)} \right]_{nm} \vec{E}(t)$$

$$\rho_{nm}^{(2)} = \rho_{nm}^{(1)} - \frac{1}{\hbar} \left[\vec{\Phi}, \rho_{nm}^{(1)} \right]_{nm} \vec{E}(t)$$

که $\vec{E}_{cm}(t) = \left(\vec{E}_{cm}(\omega_1) e^{i\omega t} + \vec{E}_{cm}(\omega_2) e^{-i\omega t} \right)$ و رای محاسبهٔ ضریب پذیرفتنی $\rho_{nm}^{(2)}$ تعیین می‌شود:

$$\rho_{nm}^{(2)}(\omega_1, \omega_2) e^{i(\omega_1 + \omega_2)t}$$

$$\rho_{nm}^{(2)}(\omega_1, \omega_2) e^{-i(\omega_1 + \omega_2)t}$$

با چاپ‌گری معادلات (26) و (27) در معادلهٔ (21) بدست می‌آید:

$$\rho_{nm}^{(2)}(\omega_1, \omega_2) = \rho_{nm}^{(2)}(\omega_1, \omega_2) e^{i(\omega_1 + \omega_2)t}$$

$$\rho_{nm}^{(2)}(\omega_1, \omega_2) e^{-i(\omega_1 + \omega_2)t}$$

که $\rho_{nm}^{(1)}(\omega_1, \omega_2)$، با بدست آوردن و $\rho_{nm}^{(1)}(\omega_1, \omega_2)$.

tحلیل و بررسی

در این مقاله، محاسبات برای نقطه‌ی کوانتومی انجام شده است. از نظریاتی که در معادله‌ی α ضریب پذیرفته‌ی وابستگی به حالت‌های هم‌مرتبه ماتریسی گسترش‌های دوقطبی الکتریکی می‌باشد، در نمودارها حالت‌های گسترش‌های دوقطبی به عنوان تابعی از شعاع نقطه‌ی کوانتومی (R)، قدرت به‌هم کنش اسپین-مادار (α_R)، شدت پتانسیل محدود کننده (ϕ) و میدان الکتریکی (F) مورد بررسی قرار می‌گیرد. نمودارهای زیر برای $h\omega_0 = 30\text{mev}$ شده‌اند.

نقاطه‌ی کوانتومی کروی با پتانسیل محدود کننده شمایی سیستمی متقارن می‌باشد که با اعمال میدان الکتریکی تقرین از بین می‌رود. برای این سیستم می‌توان ضریب پذیرفته‌ی مربوط به دوم را محاسبه کرد. اثر شعاع نقطه‌ی کوانتومی برهم کنش اسپین-مادار و میدان الکتریکی را روی ضریب پذیرفته‌ی مربوط به دوم فرآیند جمع فرکانس‌های بررسی شده است. در شکل‌های ۴، ۲۰ و ۳ حالت‌های μ_0 برای نقطه‌ی کوانتومی $\psi_{001}(\bar{r})$ برای نقطه‌ی $\psi_{002}(\bar{r})$ بر حسب $\psi_{001}(\bar{r})$ و $\psi_{002}(\bar{r})$ پارامترهای مختلف رسم شده است.

در شکل ۱ نشان داده شده که حالت‌های دوقطبی با افزایش شعاع نقطه‌ی کوانتومی افزایش
می‌یابد تا در یک شعاع خاص بیشینه می‌شود و به دنبال آن با افزایش شعاع بطور متفاوت با حالت قبل بیشینه شدن. کاهش می‌یابد. پس به ارای هر میدان الکتریکی و شدت برم کنش اسپین- مدار، ضریب پذیرفتنی در یک شعاع خاص نقطه‌ی کرونومی بیشینه می‌شود. در همین شکل ضریب پذیرفتنی برای میدان‌های مختلف سهم شده است. همانطور که دیده می‌شود با افزایش میدان الکتریکی ضریب پذیرفتنی افزایش می‌یابد و قلهٔ آن به سمت شعاع- های بزرگ‌تر جابجا می‌شود. در شکل ۲ اثر قدرت برهم کنش اسپین- مدار روی ضریب پذیرفتنی نشان داده شده است. در این شکل دیده می‌شود که برهم- کنش اسپین- مدار تأثیر خیلی کمی روی ضریب پذیرفتنی دارد که این در شکل ۳ هم نشان داده شده است. شکل ۳ اثر برهم کنش اسپین- مدار روی حاصلضرب عناصر ماتریسی را برای میدان‌های مختلف نشان می‌دهد. همانطور که در شکل دیده می‌شود با افزایش قدرت برهم کنش اسپین- مدار، ضریب پذیرفتنی کاهش می‌یابد. در شکل ۱ می‌بینیم که با افزایش میدان الکتریکی، ضریب پذیرفتنی هم افزایش می‌یابد، زیرا با افزایش میدان الکتریکی تاریک سیستم بیشرشکسته می‌شود و فرآیند جمع فرکانسی هم بیشرشکسته می‌شود و در نتیجه ضریب پذیرفتنی هم افزایش می‌یابد.
که اثر برم کنش اسپین- مدار برای میدان‌های الکتریکی مختلف.

شکل 7 نمودار حاصلضرب عناصر ماتریسی برحسب قدرت برهم کنش اسپین- مدار برای میدان‌های الکتریکی مختلف.

در شکل (4) حاصلضرب عناصر ماتریسی برای حالت-

\[
\begin{align*}
\psi_{001}(\vec{r}) &= |0\rangle, \\
\psi_{002}(\vec{r}) &= |1\rangle.
\end{align*}
\]

برحسب شعاع نقطه‌ای کوانتومی رسم شده است. از مقایسه این شکل و شکل (1) نتیجه گرفته می‌شود که اثر اسپین بالا و پایین روی ضریب پذیرفتاری یک است. در شکل های (5) و (6) حاصلضرب عناصر ماتریسی برای حالت‌های

\[
\begin{align*}
\psi_{011}(\vec{r}) &= |0\rangle, \\
\psi_{012}(\vec{r}) &= |1\rangle.
\end{align*}
\]

برحسب پارامترهای مختلف رسم شده است. شکل (5) همان رفتار شکل (1) را دارد اما در این شکل، ضریب پذیرفتاری برای میدان‌های الکتریکی مختلف کاهش یافته و قله‌ای آن به سمت شعاع‌های بزرگتر جابجا شده است (جدول 1). در شکل (7) نشان داده شده که با افزایش قدرت برهم کنش اسپین- مدار، ضریب پذیرفتاری افزایش می‌یابد.

در حالی که در شکل (3)، با افزایش قدرت برهم کنش اسپین- مدار، ضریب پذیرفتاری کاهش می‌یافتد. در شکل های (6) و (7) می‌بینیم که اثر برهم کنش

4- نتایج گیری

با اعمال میدان الکتریکی تقریبی سیستم از بین رفته، و ضریب پذیرفتاری مربوط دوم قابل محاسبه می‌شود. همان‌طور که در نمودارهای دیدیم، اثر برهم کنش اسپین-

مداد روي ضریب پذیرفتاری مربوط دوم ناجی است. علاوه بر برهم کنش اسپین- مدار، میدان الکتریکی و شعاع نقطه‌ای کوانتومی هم روی ضریب پذیرفتاری مؤثر هستند. با افزایش میدان الکتریکی ضریب پذیرفتاری افزایش می‌یابد و قله‌ای آن به سمت شعاع- های بزرگتر جابجا می‌شود.

جدول 1 ماکسیم حاصلضرب عناصر ماتریسی و شعاع نقطه‌ای کوانتومی برای ویژه حالت‌ها و میدان‌های الکتریکی مختلف.

| States | \(0\) = |000\> | \(0\) = |010\> | \(0\) = |011\> | \(0\) = |012\> |
|--------|---------|---------|---------|---------|
| \(F/(KV/cm)\) | \(R_{max}\) | \(H_{max}\) | \(R_{max}\) | \(H_{max}\) |
| 5 | 12.42 | 0.0124 | 14.03 | 0.0148 |
| 10 | 12.54 | 0.0224 | 14.14 | 0.0248 |
| 15 | 12.74 | 0.0424 | 14.24 | 0.0448 |
| 20 | 13.04 | 0.0524 | 14.34 | 0.0548 |

